

NATIONAL COMMUNICABLE DISEASE CENTER

NCDC LIBRARY ATLANTA, GA. 30333

SURVEILLANCE

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE/PUBLIC HEALTH SERVICE Bureau of Disease Prevention and Environmental Control

CONTRIBUTORS

National Communicable Disease Center	David J. Sencer, M.D., Director
Epidemiology Program	Alexander D. Langmuir, M.D., Chief
Bacterial Diseases Section	Philip S. Brachman, M.D., Chief John V. Bennett, M.D., Deputy Chief
Salmonellosis Unit	Steven A. Schroeder, M.D., Chief Richard N. Collins, M.D., Former Chief* Arnold F. Kaufmann, D.V.M.* Albert R. Martin, M.D., Former Chief* L. Ariel Thomson, D.D.S.* Michael D. Treger, D.V.M.
Statistics Section	Richard C. Arnold, B.S. Wilma W. Arnold, James B. Goldsby, M.S.* Stanley M. Martin, M.S.*
Veterinary Public Health Section	James H. Steele, D.V.M., Chief
Epidemic Aid Services Laboratory	Theodore C. Eickhoff, M.D., Chief John R. Boring, III, Ph.D., Former Chief ⁴ William T. Martin, M.S., Assistant Chief
Veterinary Public Health Laboratory Unit	Mildred M. Galton, M.Sc., Chief George K. Morris, Ph.D.

Collaborators

Laboratory Improvement Program				
Bacteriology Section				
Enteric Bacteriology Unit	 . William H	Ewing,	Ph.D.,	Chief

October 9, 1967

•

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	1
II.	MATERIALS AND METHODS	1
III.	SUMMARY	1
IV.	REPORTS FROM THE STATES	1
	A. HUMAN	1
	B. NONHUMAN	5
v.	FOOD AND FEED SURVEILLANCE	7

I. INTRODUCTION

This report summarizes the results of the fourth year (January 1, 1966 - December 31, 1966) of the Salmonella Surveillance Program jointly established by the National Communicable Disease Center (NCDC) and the Association of State and Territorial Epidemiologists and Laboratory Directors. The bulwark of the program is the weekly reporting of isolations of salmonellae submitted by all fifty states, the District of Columbia, the Salmonella Reference Center-Beth Israel Hospital, New York City, the U.S. Department of Agriculture, the National Animal Disease Laboratory, Ames, Iowa, and the U.S. Food and Drug Administration.

II. MATERIALS AND METHODS

The data analyzed are derived from two sources: the Morbidity and Mortality Analysis Unit (1942-1966 Morbidity and Mortality Weekly Report (MMWR) Annual Supplements) and the Salmonellosis Unit. The data from the first source (MMWR) include cases of salmonellosis diagnosed clinically and reported as typhoid fever or salmonellosis exclusive of typhoid fever in periodic reports from the states. The cases are not necessarily bacteriologically confirmed. In contrast, the data collected by the Salmonellosis Unit represent state laboratory identifications of salmonellae, without distinction as to whether the isolate came from a clinical case or a carrier.

Interpretations are limited by the bias inherent in the data analyzed. For example, geographical prevalence and age of patients reflect "interest factors." Additionally, such factors as seriousness of disease and a lack of adequate laboratory facilities in some areas have an influence on the results presented.

Despite the limitations, certain observations are justified, and the data herein provide the basis for comparison with past and future results.

III. SUMMARY

During 1966, 20,040 isolations of salmonellae from humans were reported, representing a 3.9 percent decrease from the 20,865 reported for 1965 and a 5.1 percent decrease from the 21,113 reported in 1964. <u>Salmonella typhi-murium</u> and <u>S. typhi-murium var</u>. <u>copenhagen</u>, as in previous years, were the most common serotypes, accounting together for almost one third of all isolations.

A total of 7,709 recoveries of salmonellae from nonhuman sources were reported during 1966, an increase of 12.8 percent over 1965 and 41.2 percent over 1964. This increase probably reflects an increasing interest in surveillance of nonhuman reservoirs of salmonellae.

IV. REPORTS FROM THE STATES

A. HUMAN

Incidence

The incidence of reported human salmonellosis (other than typhoid fever) in the United States increased strikingly between 1942 and 1964 (Figure 1). Since 1964, however, the incidence has been essentially constant (Figure 2).

Figure 1 compares the incidence of salmonellosis in the United States with typhoid fever. As can be seen, the incidence of typhoid fever has been decreasing since 1942, in contrast to salmonellosis due to all other serotypes.

The seasonal distribution of salmonella isolations from humans from 1963 through 1966 is shown in Figure 3. A consistent seasonal pattern is apparent with the greatest number of isolations being reported from July through October for each year. The lowest number of isolations are reported from January to May.

Serotype Frequency

A total of 153 different salmonella serotypes were reported in 1966, representing an increase of 7 serotypes (5 percent) over 1965 (Tables I and II). This number (153) accounted for approximately 12 percent of the estimated 1200 known salmonella serotypes.

The 10 most frequently reported serotypes appear in Table III. These 10 serotypes accounted for 14,392 (71.8 percent) of the 20,040 isolates reported during 1966. As in previous years, <u>S</u>. <u>typhi-murium</u> and <u>S</u>. <u>typhi-murium var</u>. <u>copenhagen</u> together were the most frequently reported serotypes during 1966 and represented 29.6 percent of all isolations. These serotypes were also the most frequently reported serotypes for each month of 1966. <u>Salmonella heidelberg</u>, the second most frequently reported serotype, accounted for 8.1 percent of the total isolations.

Table III also demonstrates the close correlation between human and nonhuman sources of salmonellae, with 5 serotypes appearing on both lists. The similarities, taking into consideration that the data are not wholly comparable, confirm the importance of the nonhuman reservoirs of salmonellae in the epidemiology of human salmonellosis.

Geographic Patterns

The geographic distribution of salmonella isolations reported during 1966 appears in Figure 4. New York reported the largest number, 2,174, followed by California with 1,920. Other states reporting over 1,000 isolations were Massachusetts, Illinois, and Florida.

The incidence of salmonella infection for the entire country was 10.2 per 100,000. Hawaii, as in past years, reported the highest incidence with 75.5 per 100,000. Other areas reporting incidence rates higher than 20 per 100,000 were Massachusetts, New Mexico, Louisiana, and the District of Columbia.

Geographic variations among specific serotypes are seen in Tables I and II. Several serotypes had definite regional patterns, which had been observed in previous years. This is especially true in Hawaii, which accounted for only 2.7 percent of national salmonella isolations but reported 98 percent (44 of 45) of all <u>S</u>. weltevreden recoveries, 81 percent (21 of 26) of <u>S</u>. oslo isolates, 43 percent (19 of 44) of <u>S</u>. worthington isolations, and 42 percent (13 of 31) of <u>S</u>. livingstone recoveries. Other regional patterns were seen with <u>S</u>. javiana, which had 67 percent of the 312 isolations reported from three Gulf states, Texas, Florida, and Louisiana; <u>S</u>. miami, which, appropriately enough, had 66 percent of its isolations in Florida; and <u>S</u>. saphra, which had all 13 national isolations recorded from Texas, continuing a trend first noted in 1965.

Outbreaks

In 1966, 24 salmonella outbreaks involving 2,317 individuals were investigated and reported in the Salmonella Surveillance Reports. Considering the annual total of reported isolations, 20,040, these reported outbreaks obviously represent only a small fraction of actual outbreaks occurring.

Of the 24 outbreaks reported, 16 were traced to a causative agent: 6 involved contaminated egg products, 2 were traced to contaminated poultry, and 3 involved contaminated milk; carmine dye, smoked whitefish, headcheese, a human carrier, and multiple

2

food items each accounted for 1 outbreak. In 8 outbreaks, no definite source could be determined. Vehicles involved demonstrate the importance of animal reservoirs and food transmission in the epidemiology of salmonellosis and give direction to control measures needed.

Seven of the epidemics occurred in hospitals, involving 1,297 patients and including at least 7 deaths. Thus, over one half of those involved in the reported outbreaks were hospital patients, reemphasizing the problem of hospital-acquired salmonellosis.

Vehicle of Infection	Serotype	No. of Cases	Location
Eggs and egg products	S. <u>heidelberg</u> , S. <u>siegburg</u> , &	4	Family
	S. thompson	13	Family
	S. enteritidis	41	Mental hospital
	S. blockley	167	Hospital
	S. enteritidis	40	Hospital
	S. saint-paul	103	Bakery
Poultry	S. heidelberg	250	Banquet
	S. typhi-murium	107	Supermarket
Raw milk	S. typhi-murium	2	Family
Naw IIIIN	S. typhi-murium	11	Family
Powdered milk	S. new-brunswick	30	Interstate
Carmine dye	<u>S</u> . <u>cubana</u>	31	Hospitals
Smoked whitefish	<u>S. java</u>	300	Interstate
Headcheese	<u>S. cambridge</u> & <u>S. typhi-murium</u>	3	Families
Human carrier	S. newport	18	Baby-sitters
Multiple food items	multiple	67	Banquet
Vehicle of infection	S. enteritidis	54	Restaurants
unknown	S. thompson	13	Hospital nursery
	S. typhi-murium	25	College dormitory
	S. heidelberg	5	Newborn nursery
	<u>S</u> . <u>infantis</u>	11	Restaurant
	S. blockley	6	Family
	S. reading	16	Orphanage
	S. typhi-murium	1000	Mental hospital

Outbreaks Reported in Salmonella Surveillance Reports in 1966

TOTALS: Outbreaks (24) Serotypes (14) Cases (2317)

Age and Sex Distribution

Of the 19,589 individuals for whom sex was reported during 1966, 9,643 (50.8 percent) were males, and 9,846 (49.2 percent) were females (Table IV). Although generally there appears to be no sex predilection, it is interesting to note that for the age groups under 20 years, there is a significant preponderance of males and the opposite is true for age groups over 20 years. The same distribution has been seen for the past 3 years in annual summary data. This is illustrated in the following table:

	Ma	le	Fen	nale	
Age (Years)	Number	Percent	Number	Percent	Total
Less than 20	4,824	53.7	4,155	46.3	8,979
20 and over	1,900	40.7	2,765	<u>59.3</u>	4,665
Total	6,724	49.3	6,920	50.7	13,644

(Unknown and unspecified ages not included)

Of the 13,736 individuals reported by age during 1966, 9,043 (65.8 percent) were less than 20 years of age. This is almost the same proportion as in 1965. Figure 5 demonstrates the number of isolations per 100,000 in various age groups for 1966. This pattern closely approximates those for 1963, 1964, and 1965. However, the rates in the age groups less than 10 appeared to have been increasing over the past 4 years. This is particularly true in the less than 1 year age groups where the rates per 100,000 have been 43, 53, 63, and 69, respectively, for the years 1963 through 1966.

Mortality

During 1966, 69 deaths associated with salmonella infections were reported. The death to "case" ratio was 0.39 percent, which is similar to 1965 and 1964 (0.32 and 0.34 percent, respectively). This is not a true reflection of the mortality rate due to salmonellosis in this country because (1) reporting officials do not always have access to information concerning the clinical courses of patients' illnesses and (2) it is probable that, in some areas, isolates are reported prior to death and the deaths are then not identified as associated with salmonellosis.

Family Related Isolations

Of the 20,040 persons reported as harboring salmonellae during 1966, 4,306 (21.0 percent) also had other members of their families positive for salmonellae. This is similar to the rates for 1964 and 1965 (21.4 and 21.9 percent, respectively).

Uncommon and Rare Serotypes

Table II lists 109 serotypes which are classified as uncommon or rare. Seventy-four serotypes, representing 48 percent of the 153 reported types had 5 or less isolations each, accounting for only 139 (0.7 percent) of the 20,040 isolations reported during 1966.

B. NONHUMAN

During 1966, 7,709 salmonella isolations from nonhuman sources were reported. This represents a 12.8 percent increase over the 6,834 isolations reported in 1965 (Figure 7). The number of nonhuman isolations has increased each year since 1963, but this probably reflects increasing surveillance. The sources of these isolations are given in Figure 6 and Table V. The number and percent of isolations by source demonstrate the importance of domestic and wild fowl, which accounted for 44.8 percent of salmonella isolations reported from nonhuman sources in 1966 (Figure 6). During the first 3 years of salmonella surveillance, 1963-1965, domestic and wild fowl accounted for more than 50 percent of all nonhuman isolations. Swine, cattle, and other animals accounted for 16 percent of all nonhuman recoveries reported in 1966. The percentage of isolations from these sources has been decreasing since 1963, when almost 30 percent of nonhuman isolations were from swine, cattle, and other animals. The percentage of isolations from human foods (primarily eggs and egg products) has remained about the same in 1966. During 1966 an interstate outbreak of gastroenteritis due to S. newbrunswick was identified and traced to dried milk. This outbreak stimulated intensive surveillance of dried milk products by industry, state, and federal agencies. Isolations from dried milk products accounted for 3.5 percent of the nonhuman isolations in 1966.

Isolations from animal feedstuffs accounted for 16.4 percent during 1966. This represents almost a threefold increase over previous years and reflects continued and increased interest in the surveillance of animal feeds.

Of particular interest was the finding of salmonellae in carmine dye and in glandular products of animal origin which are destined for medicinal use.

The geographic distribution of serotypes isolated from nonhuman sources appears in Figure 8 and Table VI. Isolations were reported from all states except Nevada and Maine. California reported 1,303 isolations for the largest number, followed by Louisiana with 917 and Minnesota with 828. Geographic concentrations of isolations are thought to reflect interest factors in the various states rather than prevalence. For example, Indiana and Minnesota had plants involved in the <u>S</u>. <u>new-brunswick</u>-dried milk outbreak and thus reported large numbers of isolates of that serotype from their investigations of those plants. Thus, no valid conclusions can be drawn from the geographic distribution of individual serotypes with the possible exceptions of <u>S</u>. <u>dublin</u>, which continues to be restricted to the far western states, and <u>S</u>. <u>javiana</u>, which is localized in the Gulf states, paralleling the distribution of human isolations of that serotype.

The 10 most common salmonella serotypes isolated from nonhuman sources during 1966 are listed in Table III. These 10 serotypes comprised 62 percent of all nonhuman isolates (59.1 percent in 1965).

Sources

Domestic and Wild Fowl and Their Products

During 1966 there were 3,455 (44.8 percent) isolations from domestic and wild fowl and 409 (5.3 percent) isolations from eggs and egg products. Comparable 1965 totals were 3,842 (56.2 percent) and 500 (7.3 percent) isolations, respectively.

The 5 most common serotypes isolated from eggs and egg products in order of decreasing frequency were S. <u>infantis</u> (12.0 percent), <u>S. montevideo</u> (12.0 percent), <u>S. heidelberg</u> (11.3 percent), <u>S. siegburg</u> (6.1 percent), and <u>S. oranienburg</u> (5.6 percent).

The 5 most commonly isolated serotypes from chickens and turkeys are shown in Table VIII. <u>Salmonella heidelberg</u> continues to be the number one serotype isolated from turkeys with 458 (24.7 percent) isolations.

Domestic and Wild Animals

During 1966 there were 1,227 (16 percent) isolates reported from domestic and wild animals as compared to 1,010 (14.8 percent) reported during 1965. The 5 most common serotypes isolated from swine and cattle in 1966 are shown in Table VIII. Swine accounted for more isolations than cattle in 1966, and this is in part a reflection of epidemiological studies on swine in Louisiana. The most common serotype isolated from swine in 1966 was <u>S</u>. <u>derby</u> (16.4 percent). <u>Salmonella cholerae-suis var</u>. <u>kunzendorf</u> accounted for only 14.9 percent of the isolations from swine in 1966 as compared to 40 percent in 1965.

In 1966, 61.7 percent of all isolations of cattle were <u>S</u>. <u>typhi-murium</u> or <u>S</u>. <u>typhi-murium</u> <u>var</u>. <u>copenhagen</u>. The next 2 most common serotypes from cattle were <u>S</u>. <u>dublin</u>, a host-adapted serotype, with 10.4 percent, and <u>S</u>. <u>newport</u> with 7.2 percent. The combination of these 3 serotypes accounted for over 80 percent of all isolations of salmonellae from cattle.

Dried Milk

That dried milk may be of substantial importance in the transmission of salmonellosis to humans is evidenced by its association with outbreaks of human disease and the isolations of multiple serotypes from the products and environment of several plants in the United States (See SSR #53, 55, 57). Dried milk accounted for 271 (3.5 percent) of isolations from nonhuman sources in 1966. No isolations of salmonellae from this source had been reported in this country prior to 1966. The 5 most common serotypes found in dried milk were <u>S</u>. <u>new-brunswick</u> (29.6 percent), <u>S</u>. <u>tennessee</u> (15.9 percent), <u>S</u>. <u>cubana</u> (13.3 percent), <u>S</u>. <u>montevideo</u> (7.1 percent), and <u>S</u>. <u>binza</u> (6.3 percent).

Animal Feed and Feed Ingredients

During 1966, there were 1,274 (16.5 percent) salmonella isolations reported from animal feed and feed ingredients as compared with 367 (5.4 percent) isolations during 1965. This sharp increase represents the continued and increased surveillance of animal feedstuffs in the United States for the presence of salmonellae. Much of this increase represents data obtained in a rendering plant survey by the U.S. Department of Agriculture, increased animal feed surveillance in the states, and sampling of animal feedstuffs destined for interstate shipment by the U.S. Food and Drug Administration. The most common serotypes isolated from animal feeds were S. eimsbuettel (9.8 percent), S. montevideo (9.0 percent), S. senftenberg (6.4 percent), S. anatum (5.3 percent), and S. livingstone (5.0 percent). As judged by these results, animal and poultry by-product feed ingredients remain the chief source of contamination of animal feeds. Of 321 contaminated animal feeds that were identified in 1966, 314 (98.0 percent) were from animal or poultry by-product feed ingredients. Only 7 (2.0 percent) were from vegetable protein supplements, indicative of the small but persistent problem of salmonella contamination of products such as cottonseed meal and soybean meal.

Miscellaneous

Cold-blooded vertebrates, particularly pet turtles, continued to receive attention in 1966 as carriers of salmonellae. This is evidenced by the 141 isolations of salmonellae from turtles. The most common serotype was <u>S</u>. <u>oranienburg</u>, which accounted for 40.3 percent of all turtle isolations.

Of particular interest was the finding of salmonellae in carmine dye used for diagnostic studies in hospitalized patients and animal glandular products for medicinal use. All 90 isolations reported from carmine dye were <u>S</u>. <u>cubana</u>. During 1966, 114 isolations were reported from animal glandular substances. The most common serotypes reported from these products were <u>S</u>. <u>anatum</u> (29.9 percent), <u>S</u>. <u>newport</u> (16.7 percent), S. derby (10.5 percent), and S. bareilly (7.9 percent).

Human infections with <u>S</u>. <u>cubana</u> were traced to carmine dye in 1966. In contrast, animal glandular products have not, to date, been reported in association with human disease.

Rare Serotypes

Table VII lists 46 serotypes classified as rare which were isolated from nonhuman sources. The most common nonhuman sources of rare salmonella serotypes were animal feeds and ingredients, accounting for 26 (44.1 percent) of the 59 isolations. Several nonhuman isolations were made in states recording human recoveries of the same rare serotypes. This pattern was seen in Ohio with <u>S</u>. <u>oslo</u>, in Illinois with <u>S</u>. <u>abortus</u>-bovis, in Maryland with S. albany, and in New Jersey with <u>S</u>. <u>bradford</u>.

V. FOOD AND FEED SURVEILLANCE

Beginning in March 1966, the Food and Feed Surveillance Laboratory of the Veterinary Public Health Laboratory Unit established a food and feed sampling program for the detection of salmonellae, other enteric pathogens, and staphylococci. The program was conducted with the cooperation of the health departments of New York City, Michigan, Colorado, Florida, New Mexico, North Carolina, Louisiana, Illinois, Virginia, and Washington. Each month, samples of specified food and feed items were submitted for examination. Selection of products were made on the basis of those frequently involved in outbreaks of human salmonellosis and new or suspect items. Findings were reported monthly in the Salmonella Surveillance Reports. Foods yielding salmonella were readyto-eat meats, 1.2 percent; raw meats, 4.3 percent; and foods containing red food coloring, 0.6 percent; whereas, nonfat dry milk, cocoa products, and cake mixes were negative. Salmonellae were isolated from mixed feeds, 2.4 percent, and calf starter, 2.3 percent; but no salmonellae were isolated from 177 samples of milk replacer for calves.

7

	SSR Reference	No.	Po	sitive	
Product	(Issue)	Samples	No.	Percent	Serotype Isolated
Nonfat dry milk	49, 50, 51, 52	198	0	0.0	
Ready-to-eat meat	49, 51, 54, 55	342	4	1.2*	2- <u>S</u> . <u>typhi-murium</u> <u>var</u> . <u>copenhagen</u> 1- <u>S</u> . <u>anatum</u> 1- <u>S</u> . <u>infantis</u>
Raw meat**	51, 54, 55	185	8	4.3	2- <u>S</u> . <u>derby</u> 2- <u>S</u> . <u>anatum</u> 1- <u>S</u> . <u>muenster</u> 1- <u>S</u> . <u>javiana</u> 1- <u>S</u> . <u>heidelberg</u> 1- <u>S</u> . <u>newport</u>
Cocoa drink products	52	191	0	0.0	
Cake mixes	53, 54	206	0	0.0	
Foods with red coloring	55	176	1	0.6	<u>S. cubana</u>
Total Foods		1298	13	1.0	
Milk replacer for calves	50, 51	177	0	0.0	
Calf starter	50, 51	43	1	2.3	S. worthington
Mixed feeds	52	210	5	2.4	2- <u>S</u> . <u>anatum</u> 1- <u>S</u> . <u>tennessee</u> 1- <u>S</u> . <u>typhi-murium</u> 1- <u>S</u> . <u>muenchen</u>
Total Feeds		430	6	1.4	

*All positive samples were headcheese

**Beef, veal, bacon, and horse meat

Figure 1

REPORTED INCIDENCE OF HUMAN SALMONELLOSIS UNITED STATES, 1942-1966

Figure 2

REPORTED HUMAN ISOLATIONS OF SALMONELLA UNITED STATES, 1963-1966

Figure 3.

REPORTED HUMAN ISOLATIONS OF SALMONELLAE IN THE UNITED STATES

AVERAGE NUMBER OF ISOLATIONS PER WEEK

SOURCE: U.S. DEPARTMENT OF COMMERCE, CURRENT POPULATION REPORT'S SERIES A-25 NO. 348

State	Number of	Isolations	Rate Per 100,000	State	Number of	Isolations	Rate Per 100,000
Alabama	116	(-)	3.3	Montana	83	(+)	11.8
Alaska	32	(+)	11.8	Nebraska	11	(+)	0.8
Arizona	149	(-)	9.2	Nevada	18	(-)	4.0
Arkansas	274	(+)	14.0	New Hampshire	77	(+)	11.3
California	1,920	(-)	10.1	New Jersey	550	(+)	8.0
Colorado	330	(+)	16.7	New Mexico	249	(-)	24.4
Connecticut	326	(-)	11.3	New York	2,174	(+)	11.9
Delaware	60	(-)	11.7	North Carolina	398	(-)	8.0
Dist. of Col.	172	(-)	21.3	North Dakota	26	N.C.	4.0
Florida	1,083	(-)	18.2	Ohio	506	(-)	4.9
Georgia	648	(-)	14.5	Oklahoma	156	(-)	6.3
Hawaii	542	(-)	75.5	Oregon	375	(+)	19.2
Idaho	47	(+)	6.8	Pennsylvania	886	(-)	7.6
Illinois	1,146	(+)	10.7	Rhode Island	65	(-)	7.2
Indiana	224	(-)	4.6	South Carolina	35	(-)	1.4
Iowa	118	(+)	4.3	South Dakota	17	(-)	2.5
Kansas	302	(-)	13.4	Tennessee	257	(-)	6.6
Kentucky	100	(+)	3.1	Texas	976	(+)	9.1
Louisiana	870	(-)	24.1	Utah	165	(+)	16.4
Maine	72	(+)	7.3	Vermont	16	(-)	4.0
Maryland	457	(-)	12.6	Virginia	348	(-)	7.7
Massachusetts	1,342	(+)	24.9	Washington	392	(-)	13.2
Michigan	794	(+)	9.5	West Virginia	35	(-)	2.0
Minnesota	294	(-)	8.2	Wisconsin	493	(+)	11.8
Mississippi	50	(-)	2.1	Wyoming	2	N.C.	0.6
Missouri	262	(-)	5.8	TOTALS	20,040	(-4.0%)	10.2

(+) Increase over 1965 (-) Decrease from 1965

Figure 5 RATE OF HUMAN ISOLATIONS OF SALMONELLAE BY AGE GROUP* 1966

Figure 6.

NUMBER AND PERCENT OF NONHUMAN SALMONELLA ISOLATIONS FROM THE INDICATED SOURCES IN THE UNITED STATES

INCLUDES 141 TURTLE ISOLATES

² INCLUDES 93 SEWAGE ISOLATES

INCLUDES CARMINE DYE AND ANIMAL GLANDULAR PRODUCT ISOLATES

PRELIMINARY DATA

REPORTED NONHUMAN ISOLATIONS OF SALMONELLA UNITED STATES, 1963-1966

Figure 7.

			TABLE	I 3						
COMMON SALMON	ELLA SEROTYPES	ISOLATED	FROM	HUMANS	IN	THE	UNITED	STATES	DURING	1966

	L										GEO	GG	t A P H	ΙC	DI	VIS	5 1 0	N /	AND	RE	POR	TΙ	N G	CE	NTE	ER									
SEROTYPE			N	EW EN	GLAN	ND			MIDD	LE ATI	ANTIC	0			EAST	NORTH	I CENT	RAL				WEST	NORT	H CEN	TRAL				\$	OUTH	ATLAN	TIC			SEROTYPE
	ME	NH	VT	MASS	RI	CONN	TOT	NY-A	NY-BI	NY-O	NJ	PA	TOT	OHIO	IND	ILL	MICH	WIS	TOT	MINN	IOWA	MO N	D SD	NEBR	KAN	TOT	DEL	D D	DC 1	A WV	NC S	GA GA	FLA	TOT	
anatum bareilly berta blockley braenderup	2			38 2 2 131 17	2	6 7 6	44 142 23	21 2 2 2 2 16	7 4 6 5	5 3 22 6	2 3 10	9 20 2	44 6 6 74 13	3 4 12 7	1 8 1	23 2 28 8	6 2 3 17	9 2 1 5	42 10 3 66 21	1 1 7 3	1	6 7	1	1	1 3 10 9	10 1 3 31 12	4	10 6 17	1	4 6 5	9 10 8	1	8 2 9	21 4 31	2 anatum 4 bareilly 1 berta 7 blockley 9 braenderup
bredeney chester cholerae-suís v kun cubana derby				8 28 50	2	43	14 29 52	2 3 1 1 1 1 1 1 1 1 9	7 1 13	2	3 4 3 3	2 5 8 36	16 10 23 93	1 11 9	1	9 11 2 10 20	3 14 3 10 17	2 4 1 11	15 29 6 33 58	1 11 1 2 3	1	3 1 2			1	2 15 2 4 5	2	1 8 1 3 17		2 3 2 4 9	4 2 1 1 10	1	4 4 3 2	2 2 3 6	9 bredeney 7 chester 4 cholerae-suis v kun 6 cubana 0 derby
enteritidis give heidelberg indiana infantis	8	1	1	178 2 72 108	1	46 28 20	224 2 108 131	70 3 52 1 81	79 31 2 16	59 84 18 41	24 5 52 1 26	87 9 87 13 64	319 17 306 35 228	36 1 47 2 27	15 48 1 26	106 4 118 6 68	35 2 115 1 74	41 1 34 2 36	233 8 362 12 231	13 27 19	7 17 13	16 14 23	3 1 3 1	1	10 1 10 44	49 1 73 100	6 2 6	65 1 63 2 35	9 3 14 3 7 4	15	1 23 1 2 1 73 3 30	1 13 1 4 3	1 5 5 1 6	37 <u>3</u> 3 62 <u>2</u> 4 4 48 <u>2</u> (8 enteritidis 2 give 2 heidelberg 0 indiana 3 infantis
java javiana kentucky litchfield livingstone				3 1 2 4 1		62	9 3 2 4	31 2 3	11 5 1	28 1 8 2	52 3 2 5	58 5 4 2	180 10 7 23 3	2	5	35 3 8	2 2 1 5	7	49 5 1 22 2	7 5 1		6 1 1 2			2 8 2 1	15 9 6 5 1		2 1 1	1	4	1 2	1	2 1 1	21 78 2 8 1	6 java 2 javiana 3 kentucky 4 litchfield 1 livingstone
manhattan meleagridis miami mississippi montevideo				5 1 30	2	1	6 1 36	19	1 2 14	9 4 15	3 2 30	11 1 14	30 3 6 92	2	3	10 1 8	12 1 7	7	31 2 31	5	2	3 2	3			10 3 18	1	3 10	1	4	4 1 1 4	1	1 1 1 0 6	2 1 55 28	5 manhattan 2 meleagridis 7 miami 0 mississippi 5 montevideo
muenchen newington newport oranienburg panama	1 2			8 1 21 30 11	1	2 15 3 10	10 1 38 33 24	2 1 12 19 10	10 19 2 9	10 3 31 13 16	2 1 29 12 40	6 1 39 17 4	30 6 130 63 79	7 47 15 9	3 5 3	6 59 18 7	11 4 23 22 8	9 1 22 11 2	33 10 154 71 29	5 34 4 2	5	5 14 12 3	1	1	8 21 31 6	18 3 76 47 13	2 2	7 1 15 1	1 4 1	3 3 4 2	5 1 18 3	3	7 3 1 4 1	26 3 79 20 33	8 muenchen 5 newington 5 newport 5 oranienburg 9 panama
paratyphi B poona saint-paul san-diego schwarzengrund	3 9 1		1	15 1 33 6 7	1	10 3	18 1 54 9 8	2 9 3	3 1 4 3 2	17 24 5	1 29 2	26 2	23 1 92 13 4	10 15 1	6 1 10 4	7 4 47 3 3	13 24 1 2	1 1 7 1	37 6 103 6 9	2 23 1	4	7 1 I			3	2 37 5 2	4	6 17	1 1 1 1	5	8 1	2	1 6 2 1	9 2 4 30 10 1 14	0 paratyphi B 6 poona 2 saint-paul 4 san-diego 6 schwarzengrund
senftenberg tennessee thompson typhi typhi-murium	1 3 30	1	12	5 28 16 12 406	29	2 8 6 99	7 29 25 21 577	2 20 25 406	1 12 2 113	1 28 22 361	2 16 10 135	6 5 13 17 298	10 10 89 76 1,313	1 19 44 145	1 2 11 57	3 13 54 15 367	5 14 66 9 201	1 5 108 7 108	11 33 249 86 878	2 11 2 76	1 2 2 36	2 5 29 91 1	1 1 2 5 3	1 3	1 13 10 98	1 5 33 46 322	1 7 14	3 8 15 127	2 4 1 29 9	1 3 8 1 8 1	2 3 5 9 3 34 9 107	11	7 5 8 7 5 2	1 14 36 17 13 70	1 senftenberg 6 tennessee 1 thompson 1 typhi 2 typhi-murium
typhi-murium v cop urbana weltevreden worthington untypable, group B	6	51	1	41	12	18 1 1	65 1 1 69	1 2	1	1	21 3 3	4	26 5 4 7	1 3 1	1	1 1 2	27 3 4 3	3	27 8 1 9 6	1	5	1	1	3	1	5 2 2 6		1	1 46			13	3	2	1 typhi-murium v cop 3 urbana weltevreden 4 worthington 2 untypable, group B
untypable, group Cl untypable, group C2 untypable, group D untypable, group E untypable or unknown		10 3 10		1	6 1 1 4	1	8 11 4 1 15	2					2	1		1		18	20		1		1	1		2 1 1 4			5 8 15 3 13	1 2		3	1	2	7 untypable, group Cl 3 untypable, group C2 0 untypable, group D 3 untypable, group E 2 untypable or unknown
TOTAL COMMON	70	77	15 1	, 327	64	315	1,868	859	389	864	539	876	3,527	491	218	1,096	772	481 3	8,058	283	117	258 2	6 17	11	296	1,008	56 4	47 1	69 34	1 34	4 376	35 61	4 1,0	09 3,08	1 TOTAL COMMON
TOTAL OTHER	2	0	1	15	1	11	30	25	9	28	11	10	83	15	6	50	22	12	105	11	1	4	0 0	0	6	22	4	10	3	7	1 22	0 3	4	74 1.	5 TOTAL OTHER
GRAND TOTAL	72	77	16 1	,342	65	326	1,898	884	398	892	550	886	3,610	506	224	1,146	794	493 3	,163	294	118	262 2	6 17	11	302	1,030	60 4	57 1	72 34	8 3	5 398	35 64	8 1,0	83 3,2	6 GRAND TOTAL

																TAB	LE I	(Contin	ued)													
					(G E O	G R	APH	IC	DI	VIS	IO	N A	ND	R	EPO	RT	ING	CEI	NTE	R						% of		% of	1966	7, of 1966	
SEROTYPE	EA	ST SC	UTH C	ENTR	AL	WE	ST SO	UTH C	ENTRA	L				MOUN	TAIN						PACI	FIC			OTHER	TOTAL	TOTAL	1965 TOTAL	TOTAL	NON- HUMAN	HUMAN	SEROTYPE
	КY	TENN	ALA A	MISS	TOT	ARK	LA	OKLA	TEX	TOT	MONT	IDA W	YO CO	LO	MM AR	UT	AH NE	V TOT	WASH	ORE	CAL	ALAS	HAI	TOT	VI					TOTAL	TOTAL	
anatum bareilly berta blockley braenderup	1 2	2 4 6	3 1 2 2		3 3 1 8 8	3 1 1	31 8 6 31 3	3	8 13 14 6	42 22 6 49 9	2	5	1	8 2 8 4		6 1 3	3	1 23 4 2 13 5	4 20 5	9 1	29 3 86 5	1	20 3 17	53 6. 133 11		333 78 34 603 111	1.7 0.4 0.2 3.0 0.6	300 104 47 401 85	1.4 0.5 0.2 1.9 0.4	441 30 7 194 38	5.7 0.4 0.09 2.5 0.5	anatum bareilly berta blockley braenderup
bredeney chester cholerae-suis v kun cubana derby	4 1 2	1 1 3	2 4	1	7 2 1 9	1 4 1 1	15 1 17	1 1 4	9 2 1 2 7	26 6 3 3 29	1			20 3 1 3		1 4 7 1	4	21 12 8 5	7 1 8	3 5 7	26 11 10 43	1	16 34	49 15 15 93		159 109 26 131 404	0.8 0.5 0.1 0.7 2.0	160 115 36 145 632	0.8 0.6 0.2 0.7 3.0	86 153 94 219 266	1.1 2.0 1.2 2.8 3.5	bredeney chester cholerae-suis v kun cubana derby
enteritidis give heidelberg indiana infantis	6 5 2	13 28 15	4 10 15	1	23 44 32	5 5 13	3 18 49 8 29	1 1 7 8	5 6 45 31	14 25 106 8 81	4 2	1 2 3		3 1 23 41	1	1 1 2 6	6 51 4	8 100 56	4 1 31 29	3 1 21 20	47 7 154 127	3	2 2 22 76	56 11 231 253		1,237 78 1,622 65 1,315	6.2 0.4 8.1 0.3 6.6	1,065 116 1,621 66 1,145	5.1 0.6 7.8 0.3 5.5	87 55 786 34 368	1.1 0.7 10.2 0.4 4.8	enteritidis give heidelberg indiana infantis
java javiana kentucky litchfield livingstone		42	1 4 1	3	8 6 1	3 37	21 40 10 6 2	2 2	92 2 6 2	26 171 12 12 4	1	1		1		5	4 1 2	7 5 1 1 3	1	2	43 9 2 15 2	1	3 4 13	47 11 6 15 16		367 312 38 97 31	1.8 1.6 0.2 0.5 0.2	199 361 19 96 33	1.0 1.7 0.09 0.5 0.2	51 8 46 19 86	0.7 0.1 0.6 0.2 1.1	java javiana kentucky litchfield livingstone
manhattan meleagridis miami mississippi montevideo	3	2 2 3 8	1 2 2	2	6 2 7 11	1 3	3 20 20	2	3 1 1 7 14	8 1 1 28 39				1 4		2	1	7	4	1	16 2 1 36		6 9	27 2 1 48		134 83 55 337	0.7 0.04 0.4 0.3 1.7	125 140 95 38 458	0.6 0.7 0.5 0.2 2.2	42 25 4 2 346	0.5 0.3 0.05 0.02 4.5	manhattan meleagridis miami mississippi montevideo
muenchen newington newport oranienburg panama	1 8 3 3	1 22 10	2 1 11 1	1 3 2	5 1 44 16 3	1 60 1	17 2 114 16 9	3 14 6	16 8 180 31 28	37 10 368 54 37	1 2	1		1 8 4 3	2	9 27 9 2	2	11 1 39 23 6	1 1 1 10	4 1 2	26 12 144 32 14	2 1	3 56 2 51	27 16 205 37 78		229 53 1,319 399 274	1.1 0.3 6.6 2.0 1.4	219 57 1,257 591 229	1.0 0.3 6.0 2.8 1.1	69 82 159 183 23	0.9 1.1 2.1 2.3 0.3	muenchen newington newport oranienburg panama
p aratyp hi B poona saint-paul san-diego schwarzengrund	1 4 1	4 6 3	2 2		5 12 3 3	3	2 34 18	3 4	21 4 10 6	24 6 51 6 18	2 4	2		5 18 9 1		6 3 1 2	5 16 4	13 30 25 7	10 1 17 8	137 16	1 16 77 25 3	4	21 1 1	11 17 256 51 4		153 40 737 122 71	0.8 0.2 3.7 0.6 0.4	177 48 767 229 114	0.8 0.2 3.7 1.1 0.5	9 20 334 110 276	0.1 0.3 4.3 1.4 3.6	paratyphi B poona saint-paul san-diego schwarzengrund
senftenberg tennessee thompson typhi typhi-murium	8 40	3 27 69	1 3 32	1	1 7 35 147	1 1 3 33 48	14 7 21 38 129	2 20 11 54	5 3 16 20 252	22 11 60 102 483	1 58	6	1	1 3 8 1 31	12	3	3 6 48	$ \begin{array}{r} 1 \\ 12 \\ 11 \\ 4 \\ 27 \\ 3 \\ 275 \end{array} $	3 6 21 177	1 3 13 75	7 8 33 94 659	1	1 5 2 12 75	8 17 44 140 987		72 133 579 654 5,744	0.4 0.7 2.9 3.3 28.7	74 173 562 719 6,526	0.4 0.8 2.7 3.4 31.3	188 206 203 1 8884	2.4 2.7 2.6 0.01 11.5	senftenberg tennessee thompson typhi typhi-murium
typhi-murium v cop urbana weltevreden worthington untypable, group B		1	3	16	1 19	4	30 7		10 5 4 3	44 5 4 23	1	7	1		79	2	1	10 1 1 82	1	20	3 4 10	8	44 14	3 44 19 38		178 28 45 44 312	0.9 0.1 0.2 0.2 1.6	203 33 35 46 293	1.0 0.2 0.2 0.2 1.4	203 18 0 116 19	2.6 0.2 0.0 1.5 0.2	typhi-murium v cop urbana weltevreden worthington untypable, group B
untypable, group Cl untypable, group C2 untypable, group D untypable, group E untypalbe or unknown		1		2 6 1 1 4	3 6 1 1 4	6 12 3 2 2	2		12	9 12 5 2 8	1				107 18 16 4	1 2		109 18 18 4 1	1	2 1 3	2	1 4		2 1 5 1 5		140 61 54 13 81	0.7 0.3 0.3 0.06 0.4	91 57 47 50 115	0.4 0.3 0.2 0.2 0.6	3 0 2 0 2 3 3 32	0.04 0.0 0.0 0.04 0.4	untypable, group Cl untypable, group C2 untypable, group D untypable, group E untypable or unknown
TOTAL COMMON	96	241	112	50	499	272	802	151	907	2,132	81	47	2 3	17	242 14	4 1	63 1	8 1,014	375	352	1,844	29	515	3,115		19,302	-					TOTAL COMMON
TOTAL OTHER	4	16	4	0	24	2	68	5	69	144	2	0	0	13	7	5	2	0 29	17	23	76	3	27	146		738						TOTAL OTHER
GRAND TOTAL	100	257	116	50	523	274	870	156	976	2,276	83	47	2 3	30	249 14	9 1	65 1	8 1,043	392	375	1,920	32	542	3,261		20,040		20,865		7,709		GRAND TOTAL

TABLE II OTHER SALMONELLA SEROTYPES ISOLATED FROM HUMANS DURING 1966

SPOOTSP											RE	PORTI	NG CI	ENTER	t				_							_			
SERVITPE	ALA	ALAS	ART	ARK	CAL	COLO	CONN	DEL	DC	FLA	GA	HAI	IDA	ILL	IND		KAN	ĸY	ы	ME	MD	MASS	місн	MINN	MISS	MO	HONT	NEBR	NEV
aberdeen abony abortus-bovis agama alachua					1 2					1	1			2			1		1										
slbany amager arkansas arechavaleta atlanta					4					2	1 19								1		1	2	1	1			1		
austin ball berlin binza bonaire					2 4 1	1				з									3		3	. 1		2		1			
bonariensis bovis-morbificans bradford braendenburg california		1			1 2	2	1			1	1 2	1		1	2		1		1				1						
carra u cerro chailey choler ae -suis coleypark	1				5 1	1				2		3		1			1		3		2	1							
colorado concord corvallís daytona denver										2				1					1										
drypool dublin duesseldorf duisburg durham					4			1			1								2					3					
eimsbuettel fayed galiema gallinarum gaminara						1				3									1 5				2						
garoli glostrup grumpensis habana haifa									1		3	1		1							1		1						
hartford ibadon inverness irumu johannesburg					2	2	1			11	1	1		3					1			1	1	1		1			
kaapstad kottbus lanka loma-linda lomita			1		1 2	1								2															
london luciana madelia manchester menston	1					1				1 1 1					1		2												
minnespolis minnesots mission mjimwema molade					3					2	1				1	1													
muenster nagoya new-brunswick new-haw newhaws	1	2	1		2	1	5			11 5	2			2	1				3		2	5	2	2					
nienstedten norwich nottingham ohio orion				2	7		1			3				1					6				2			1			
oritamerin os oslo papuana paratyphi-A					4							21					1		3		1	2							
paratyphi-B v odense paratyphi-C phoenix pomona portland					2	1													1				2			1			
potsdam pullorum reading remo rubislaw			1		1 14	2	3	3		2				2 9 17				4	1	2			5	2			1		
saphra sarajane sendai seremban siegburg	1		1		2				2	1									1			1							
símsbury soshanina solna stanley stockholm										2	1			1 2								1							
sundsvall tallahassee texas thomasville virchow			1							6				1	1				1				3						
wassenaar welasco westerstede westhampton untypable group A										5 1	1								1				1						
untypable group G untypable group R untypable group O					3	1.				1		17			ļ				1	-	10		20		0			6	0
TOTAL	1	3	P	2	76	13	11	4	P	174	34	27	٢	50	P	1	6	4	80	2	10	15	22	11	0	۴	2	0	0

										REPO	RTI	NG C	ENT	TER	LLA	SERU	TYPES	150	LATI	SD F	KOM H	UMAN	s pu	RING	1966			
NH B	IJ	NM	NY-A	NY-BI	NY-C	NC	ND	оніо	OKLA	ORE	PA	RI	sc	SD	TENN	TEX	UTAH	VΤ	VA	VI	WASH	wv	WIS	WYO	1966 TOTAL	1965 TOTAL	1966 non-human TOTAL	SEROTYPE
																			1						1			aberdeen abony
																2									2		2	abortus-bovis agama
+	-	-		-	2	-	-		-	-			-	-		1			-			-	-	-	14	5	30	albany
				1																					3	1	4	amager arkansas
																									1 19	8	1	arechavaleta atlanta
Π																									1	_		austin
	,		,	,							2														2	20		bell
		_																			•				1	20		bonaire
			3																		2				1 12	31	3	bonariensis bovis-morbificans
	1																								4	1	1	bradford brandenburg
	+	-		-	-	-	-		-	-	-	-	+	-		3						-	-	-	15	22	33	california
																4			1						12	13	66	cerro
				2	3			1																	10 2	10	6	cholerae-suis coleypark
Π																									1	3	1	colorado
																									1	1	4	concord corvallis
Ц	_	_		_												2									2	1	5	denver
					1																				2 4	3	15 39	drypool dublin
	1				1			2													2				6	5		duesseldorf duisburg
H	+	-	1		-	7	-	-	-	-	-		+	-	1	2		-	-	$\left \right $		-	-	-	17		198	durham
						9										-									9	-	2	fayed galiema
				1	1											2					1				1 10	13	23	gallinarum gaminara
					1																				1			garoli
					1														1						2		6	grumpensis
\vdash	-	_			-	-	_	-	-	-	-		_	_		_		_							4	1	-	haifa
	1					2		2								2		1					4		33	22	1	hartford ibadon
			4	1	1																				8	23	4	irumu iohannesburg
H	1	-		-				-																	1	2	1	kaapstad
			1							Ι.															1	9	1	kottbus lanka
		_	2																						2	3	-	lomita
																									1	1	1	london luciana
	1										1														3	3	2	madelia manchester
H	-	-	1	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-			-	-	1	11	3	minneanolis
									1						2	2							1		8	14 16	51	minnesota
			1																				1		1			mjimwema molade
	1										5					1							2		27	12	_	muenster
	1		3		1					2	1					9			2		4		1		53	21	86	new-brunswick new-haw
H	_	_		-		-	-	-	-	-	-		_	_		-									1			newlands
					2			1	1	1					3	7	1								28	24	7	nienstedten norwich
								3																	12	9	10	ohio
H		-			1		\vdash	-						-				-						-	1			oritamerin
																									3 26	14	6	os oslo
Ц	_	_			_			-														1			7	12		paratyphi-A
																									2	1	-	paratyphi-B v odense paratyphi-C
					,											1									4	3	1	phoenix pomona
H	-			-	-	-	-		-	-	-		-	-	-	-	-	-	+	+			-	-	3	1	1	potsdam
	2		7	1		2		1		17		1			7	3					7		2		10 105	21	57 53	pullorum reading
									1						1	8	1		1						1 30	2 11	11	rubislaw
H								2	1	-	1					13			1						13	13	-	saphra
				1	4			L.																	6		1	sendai seremban
H	2	_	1	-	1		-	-	-	-	-	\mid	-	-	2	2	-	-	-	-		-	_	-	14	16	37	siegburg
				1	1											1									5	2	9	simsbury soahanina solna
					1	1		1															1		6	7	1	stanley stockholm
H		-	-	-	+	-	+	-	-	-	+				-	1	-	-	+	1	-	-	-	-	3	1		sundsvall
						1																			7	4		tallahassee texas
					2					1						1									4	2	29	virchow
I																									2			wassenaar Welasco
					1																				6	2	5	westerstede westhampton
H	-	4		-	-	-	-	-	-	-	+	H	-	-	-	-	-	-	+	-	-	-	-	-	6	4		untypable group G
		2																							2 3	9	10	untypable group H untypable group O
0 1	1	7	25	9	28	22	0	15	5	23	10	1	0	0	16	69	2	1	7	Q	17	1	12	0	738			TOTAL

TABLE II (Continued) OTHER SALMONELLA SEROTYPES ISOLATED FROM HUMANS DURING 1966

		Human			Non Human	
Serotype	Rank	Number	Percent	Rank	Number	Percent
S. typhi-murium and S. typhi-murium						
var. copenhagen	1	5,922	29.6	1	1,087	14.1
S. heidelberg	2	1,622	8.1	2	786	10.2
S. newport	3	1,319	6.6			
S. infantis	4	1,315	6.6	4	368	4.8
S. enteritidis	5	1,237	6.2			
S. saint-paul	6	737	3.7	6	334	4.3
S. typhi	7	654	3.3			
S. blockley	8	603	3.0			
S. thompson	9	579	2.9			
S. derby	10	404	2.0	8	266	3.5
S. anatum				3	441	5.7
S. montevideo				5	346	4.5
S. schwarzengrund				7	276	3.6
S. cubana				9	219	2.8
S. tennessee				10	206	2.7
Subtotal		14,392	71.8		4,329	56.2
Total all serotypes		20,040			7,709	

Table III. - Ten most common servitypes isolated in the United States, 1966

Age (years)	Male	Female	Unknown	Total	Percent	Cumulative Percent
Under 1	1,357	1,106	38	2,501	18.2	18.2
1-4	1,870	1,596	12	3,478	25.3	43.5
5–9	918	808	8	1,734	12.6	56.1
10–19	679	645	6	1,330	9.7	65.8
20–29	439	652	4	1,095	8.0	73.8
30–39	331	483	3	817	5.9	79.7
40-49	329	486	3	818	6.0	85.7
50–59	307	424	2	733	5.3	91.0
60–69	249	366	1	616	4.5	95.5
70–79	180	235		415	3.0	98.5
80+	79	119	1	199	1.4	99.9
Subtotal	6,738	6,920	78	13,736*		
Child (unspec.)	111	80	43	234		
Adult (unspec.)	114	223	8	345		
Unknown	2,680	2,623	422	5,725		
Total	9,643	9,846	551	20,040**		
Percent	50.8	49.2				

Table IV.-Age and sex distribution of 20,040 individuals reported as harboring salmonellae during 1966

TATAL	unknown	untypable group Cl untypable group E untypable group K untypable group O	untypable group B	typhi-murium v cop typhi-suis urbana wosterstede worsterstede	taksony tennessee thommsville thompson typhi-murium	san-diego schwarzengrund senftenb e rg siegburg simsbury	poona pullorum reading rubislaw saint-paul	oranienburg orion osio panama paratyphi-B	new-brunswick newington newport norwich ohio	minneapolis minnesota montevideo muenchen muenster	manhattan manila meleagridis menston miami	kentucky lexington lille litchfield livingstone	indiana infantis java javiana johannesburg	give Brumpensis halmstad heidelberg illinois	drypool dublin eimsbuettel enteritidis gallinarum	cholerae-suís v kun corvallís cubana denver derby	california cerro champaign chester cholerae-suis	binza blockley bovis-morbificans braenderup bredeney	alachua amager anatum bareilly berta	SEROTYPE		
1,400	1		14	119	1 36 184 176	2 2 2	43	5 65	28	1112 22 5			16	164	1148	10	5 5.0	10	3	chicken		
1,858	ω	5		<u>م</u>	2 27 1 16 133	99 215 59 2	2 32 203	2 1 16	12	7 17 20	5 19	41 7	25	458	94	41 6	5 117 S	69 12	20 115 115	turkey	DOME	
72			-	1	22		1 3	-	1	ω		2		2	23	-		-	4	other, pet and	STIC	
15						0.4		_		1					1					environment		
3,345	4	5	17	155	3 64 103 332	101 233 71 2 2	2 48 36 233	7 8 22	41 32	9 132 42 8	5 25	~U _U	1 192	624	60 15	5 6 5	125	13 159 31	145.08	total domestic		OWIL
50			~	3 N	30					н н				ω		-	-	Nω	N	wild		
55			-	1 2	1 4 12	4	1 5	N		2		1 1	3 1 1	3 1	5 1 2		2			unknown wild fowl environment	and and	
3,450	4	5	22	159	3 65 2 107 374	101 238 72 2	2 53 36 234	9 8 22	41	1 9 134 43 8	5	13 1 17 10	24 194 4	630	26 61 21	2 8 52	17 15 130	16 161 31	8 3 151 3	total fowl		
584				-ω v.oo	7	FNN	30	2	25	6 F	-		N	5. 0		9 8		5 61		swine		
345			7	16	3 1 2 197	1	6 1		1 2 25	22		2	4 4	N5 N	36	3 1 1		1 32	10	cattle		
55	-			ω	45	2			N		· _								2	horses		
14 6				2	6 1								-		-	-		-	щ	sheep	DOM	
8	-		N	ч с	3	1 2 3	ωN		6 1	P	1		1 1 5 1	-	211	12		2 1	ų	dogs	EST	
17	-				8	-	-		N				-	-	N				-	cats	IC	
Ľ		-						-						1					1	and environment		ANIM
1,086			7	53 50 50	11 2 7 352	3 5 1 2	40	1 4	2 2 2 2 1	63 1	1 4 3	2 1	1 37 6 1	9 54 2	37 111 16	88 2 101	14 5	4 10 17 1	1 79 2	total domestic		ALS
63			-	- ω	1 22		- 4 -	-	1 1	1 2	1	-	12	4		N 40 N 40		2	ω	wild and zoo anim and environment	mals	
59 1	-		-	- ω	13	-	4 14		72				N		ω	2 1	22		ø	laboratory		
12 1					-				5 N				+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +		1-1	h		unknown		
.220	_		12	36	12 2 7 388	2 2	45	5-5	3 6 72 1	10	1 5 2	2 2	16411	58 2	37 11 19	92 6 104	16	13	91 2	total animals		
77					36	21	ω	10		6			E	24		H	-	ω	6	whole eggs, proce not specified	e55	
71	ω	5	-		4 10	2	-	ω	1	6	-		13			7	00	-	4 1	powdered eggs		
220	15	-	ω	N	9 19	13 25	8 32	7	9 1	35	1	1 1	23	15		-		43 1	7	frozen eggs		
40	2		ω		3 1	ω	N A	ω		μ ω			5	ω μ	-	ц	H		-	other egg product	ts	IUMAN
61					21	1				۲								5		poultry meat prod	ducts	V DI
õ				ω	1	1	10		1	1	1		- 36	9 U	4 4	18		N	14	red meat products	5	ETAF
25			-		16 1			~						-		-				commercially prep foods	pared	ty Po
271			16		43	-	00	N 4	108	1 19	1	-	5	4	15	36		17	4	dried milk		SOID
611	2				2 25 15	4	- 4	1 6	3 1 1	1		1	3 16	2		7 20	ω	1		other		
1					1															unknown		
923	22	6 4	20	N W	82 48 51	1 7 20 25	11	33	931580	1 72	NHH	ω <u>-</u>	63	58 5	19	39	13	10	35	total food		

L La La

SALMONELLA SEROTTPES ISOLATED FROM VONDAMENAN SPECIMENS IN THE UNITED STATES DURING 1966 BY SOURCE

	314	-	2 4 14	111 2 6	4 27 2	2	22 2	3 6 1	424	6 4 4 6	11 4 3	1 16	2 4	1 20	16	3 16 2	13 1	1 15 5	animal protein	
	7			1			1		1		N					÷		1	vegetable protein	ANIM
	924	4 40 2 4	1 1 39	1 28 22 10 14	10 54 2	8 2 1	36 2	6 10	34 72 6 13	1963	14 8 3	1 2 4 4	6 10 2	14 105	4 31 38	9 21 4 2	32 1 2 21	5 52 6	unknown	L FEE
	1,245	4 4 5	53	1 40 24 10 20	14 81 4	1 1 2 10	59 4	3 16 9	1 38 115 13	6 7 13 7	25 12 3	40 5 2	10 6 12 10 4	14 1 125	4 47 44	13 37 4 4	45 2 1 2 31	6 68 11	total feed	0
	139		6	11 3	2	1 5	56 4	7	1	-		1 1 12	-	4			2	16	turtles VERTE	
	16	12		1	1		1 5	1	1			-						1	other, unknown, and environment	
	192		2 3	14 7	1 3	5 1 3	4 · 1 9	15	1 4 1	3 1 2	1 1 2	2 8 7	3	1 1 12 1	1	1 1	4 0	19 2	water	
	114		ω	3	11	2 4	1	19	1	3		ى	1 3		4		2	34 9	animal glandular products	OTHER
	90														90				carmine dye	
ſ	123		2 1 5	94 J	4 4	2 1 1	υv	2 8	1 6	1	1 3	11 1	6 3	5	2 5	2	2 2	1 18	other	
	138	1 3	1 1 2 2	1 2 1 1 29	1 5 3 1	3 4	ω	11	12 1	1	41 21	6	3 16 1	22	1	1 2 1	4 1	8 1	unknown	
	7,709*	19 3 10 10	203 7 18 5 116	5 206 29 203 884	110 276 188 37 9	20 57 53 11 334	183 25 6 23 9	86 82 159 7 10	3 51 346 69 22	42 12 25 7 4	46 15 19 86	368 51 4	55 6 12 786 7	15 39 198 87 23	94 4 219 5 266	33 66 153 6	85 194 38 86	30 4 441 30 7	1966 Total	
Î		0.04	0.09 0.2 0.06 1.5	0.06 2.7 0.4 2.6 11.5	1.4 3.6 0.5 0.1	0.3	2.4 0.3 0.3 0.3	1.1 1.1 2.1 0.09 0.1	0.04 0.7 4.5 0.9	0.2	0.6 0.2 0.04 0.2 1.1	0.4 4.8 0.7 0.1 0.05	0.7 0.08 0.2 10.2 0.09	0.2 0.5 2.6 1.1 0.3	1.2 0.05 2.8 0.06 3.5	0.05	1.1 2.5 0.04 0.5 1.1	0.4 0.05 5.7 0.4 0.09	7, of 1966 TOTAL	
I	6,834*	13 22 22	282 29 29 29 84	2 117 10 198 978	158 162 127 13 4	13 200 49 5 273	190 12 32 7	1 48 203 9	1 33 213 50 11	42 4 80 3 11	48 11 18 82	37 385 25 11 7	95 0 831 6	2 63 53 37	114 25 0 106	49 63 184 2	52 213 1 25 110	20 1 269 33 25	1965 TOTAL	
Ĩ			4.1	1.7 2.9 14.3	2.3	2.9	2.8	0.7	3.1	0.6	0.7	5.6	1.4	0.7 0.9 0.8 0.5	1.7	0.7 0.9 2.7	0.8 3.1 1.6	3,9	% of 1965 TOTAL	
T	20,040	312 140 13 3	178 0 28 6 44	0 133 5 579 5,744	122 71 72 14 5	40 10 105 30 737	399 3 26 274 153	53 53 1,319 28 12	1 8 337 229 27	134 0 8 2 83	38 0 97 31	65 1,315 367 312 1	78 2 0 1,622 0	2 4 17 1,237 1	26 1 131 2 404	15 12 0 109 10	24 603 12 111 159	6 3 333 78 34	1966 HUMAN TOTAL	
	0.4	0.06	0.9	0.0 0.7 0.02 2.9 28.7	0.4	0.05 0.1 0.1 3.7	0.01 0.1 1.4 0.8	0.3	0.004 0.04 1.7 1.1 0.1	0.7 0.04 0.01 0.4	0.2	0.3 6.6 1.8 1.6 0.004	0.01 0.01 8.1 0.0	0.01 0.02 0.08 6.2 0.004	0.004 0.004 0.01 2.0	0.07 0.6 0.5 0.5	0.1 3.0 0.06 0.8	0.03 0.01 1.7 0.4 0.2	7, of 1966 HUMAN TOTAL	
	TOTAL	untypable group B untypable group Cl untypable group E untypable group K untypable group O	typhi-murium v cop typhi-suis urbana westerstede worthington	taksony tennessee thomasville thompson typhi-murium	san-diego schwarzengrund senftenberg siegburg simebury	poona pullorum reading rubislaw saint-paul	orian orian oslo panama paratyphi-B	new-brunswick newington newport norwich ohio	minnespolis minnesota montevideo muenchen muenster	manhattan manila meleagridis menston miami	kentucky lexington lille litchfield livingstone	indiana infantis java javiana johannesburg	give grumpensis haimstad heidelberg illinois	drypool dublin eimsbuettel enteritidis gallinarum	cholerae-suis v kun corvallis cubana denver derby	california cerro champaign chester cholerae-suis	binza blockley bovis-morbificans braenderup bredeney	alachua anager anatum bareilly berta	SENOTYPE	

NALMONELLA SEROTTYPES ISOLATED FROM NORMANA SPECIDENS IN THE UNITED STATES DURING 1966 BY SOURCE

to be and the second of the second second second	-														-				-																	
												R	EG	101	N	ANI	D R	EP	ORT	ING	с	EN	TE	ĸ												
SEROTYPE			NEW	ENGL	AND				MIDDL	E ATI	ANTIO			EAS	ST N	ORTH	CENT	RAL			WES	T NO	RTH	ENTR	AL				50	UTH	ATLA	NTIC	-		_	SEROTYPE
	MZ	NH	VT 1	ASS	RI	CONN	TOT	NY-A	NY-BI	NY-C	NJ	PA TOT	он	10 1	ND I	шı	AICH	WIS	TOT	INN	IOWA	MO N	D SD	NEBR	KAN	TOT	DEL	MD	DC	VA W	V NC	sc	GA	FLA	тот	
slachua amager anatum bareilly berta		2		5		1	8				3 15 1	1 233	8	20 1	9 7 1	19 2	62	5 4	9 57 6 4	5 41 2	3 1	9	1	21 6	17	5 92 9		6	8	9	1 2	1	6	9 1	42	alachua amager anatum bar ei lly berta
binza blockley bovis-morbificans braenderup bredeney		1			1	7	1 7 6	1			4 2 1	1	63	3	6 10 3	23 7_ 10	4 2 2	1 23	34 42 18	5 10 14	5 3	2 15 1	1	2	2	15 28 18		1 3 1 1	2	1 3 1	1 3	1	11	4 2	7 21 2 2 5	binza blockley bovis-morbificans braenderup bredeney
california cerro champaign chester cholerae-suis		1				1	1				2	1	1	10 2	9	3 5 6		1 61	4 24 73	3 9 32	2 3	1 1 7		2		6 12 42		3		2	1	1	2 2 3 1	1	3 6 5 2	california cerro california chester cholerae-suis
cholerae-suis v kun corvallis cubana denver derby				15 2			15	52 1			12 18	1 <u>6</u> 33 <u>5</u>	<u>5</u> 2	2 14 8	27 14 5	1 15 2	28	1 20	30 72 35	4 20	8	8	2	6	1	16 7 32	1		8	5	8	11	1 8	4	29 10 11	cholerae-suis v kun corvallis cubana denver derby
drypool dublin eimsbuettel enteritidis gallinarum						1 2	1				1 1 3	3	425	1	14 37	5	6	1	26 - 38 - 1	2 7 2	5 2 1	1				8 10 3	1	4		21	18		3 12 1	1	5 27 2	drypool dublin eimsbuettel enteritidis gållinarum
give grumpensis hslmstad heidelberg illinois						1	1	2			2	9 1	7	6	2	4	1 4 3	35	7 1 4 81	1 3 218 2	1	10	2	2		4 3 248 2		4	1	2	1 1	1	95	1	10	give grumpensis halmstad heidelberg illinois
indiana infantis java javiana Johanneaburg		2				5	2	4		4	6 9 1 1	2 15 2 12 2	8 4 1 1	1 9	15 23	1 41 1	5 1 1	3	17 81 2 1	8	3	4 28 1		10	15	7 64 1		7	2		2 3		26	1 2 6	1 42 6	indiana infantis java javiana johannesburg
kentucky lexington lille litchfield livingstone											2 2 1 14	1	2 2 1 4	1 38	2 2	5	1	1	9 3 1 39	10 1	1			3	2	14 2		1 2 3	1	1			1	13	3 2 14 3	kentucky lexington lille litchfield livingstone
manhattan manila meleagridis menston miami											2	2	1	1	1 4 3	1	1	2	4 6 7	1 3	3	1		1 3	6	5 7 6	-	1 2					1	1	32	manhattan manila meleagridis menston miami
minneapolis minnesota montevideo muenchen muenster						2	2	2			2 17	1 6 2 1	1251	2 15	1 7 5	1 21	5 30 1	4	9 77 6	1 39 3	1 7	1 10 3 1		5	3	3 64 7 1		1 15 1		1	5	2	1 58 22 3		1 81 25 3	minneapolis minnesota montevideo muenchen muenster
new-brunswick newington newport norwich ohio						1 1	1	3			1 10 1 1	1 1	1 1 2	21	35 2 3	2 7 7	2 3 5 1	2 3 2	41 17 18 1	41 4 12 1	1 7	1		2 9	1 3	41 8 26 8		1	5	2 2			1	31	2 5 8	new-brunswick newington newport norwich ohio
oranienburg orion oslo panama paratyphi-B		2		1			1	4			9	2 1	1	21 6 3	4	18 9	4	2	47 18 1 3	11 1	4	2		1	63	81 1 2		2		2			3	4	11	oranienburg orion oslo panama paratyphi-8
poona pullorum reading rubislaw saint-paul			2			1	2				9	3	3	5	3	1 2 5	2 1 2	10 2 48	2 16 6 2 61	5 5 82	2 6 9	3 1 4	1	4 4 2	4 1 9	8 15 13 107		1 1 1		9 1		4	1	2	2 14 1 17	poona pullorum reading rubislaw saint-paul
san-diego schwarzengrund senftenberg siegburg simsbury						1	1				2 12 1	1	3 2	6 5	6 16 4 2 1	5 12	1 2 27	4 2	7 31 25 29 1	6 12 49	2 10	4 6 2	1 5	2	1	13 21 66		1 2	4		1	1 4 1 1	4	3	5 6 11	san-diego schwarzengrund senftenberg siegburg simsbury
taksony tennessee thomasville thompson typhi-murium		6		2		1 5 48	1 5 56	8			1 17	1	1	1 2 23	12 18 71	9 22 20	7 11 31	2 1 28	31 54 173	60 4 8 61	5 1 8	1 2 26	3	2 2 1 3	7 12	68 6 19 113	1	2 15 13 13	3 2 2 2	4 2 19	413	3 1	1 4 9	49	3 26 35 62	taksony tennessee thomasville thompson typhi-murium
typhi-murium v cop typhi-suis urbana westerstede worthington						5	5	1			10	14 2 1 3	1 3 4	1 1 1	10	3 5 25	6 2 4	10 2	30 8 45	14 1 1	1	9		1 3	2	25 1 4 2 9		8 1 1				5	46	1	61 1 8	typhi-murium v cop typhi-suis urbana westerstede worthington
untypable group B untypable group Cl untypable group E untypable group K untypable group O														1		2	2		5			3	1			4		1							1	untypable group 8 untypable group C1 untypable group E untypable group K untypable group 0
unknown	-		-				-	1		-	13	1	4	1	-	_	1	_	2			5	-	-		5					-	T	1		1	unknown
TOTAL	0	15	2	25	1	88	131	82	0	4	219	175 48	0 2	15 4	49 3	34	219	285	1,502	825	133	181	1 17	100	151	1,408	3	142	43	70	4 52	2 30	36:	79	786	TOTAL

TABLE VI REPORTED NONHUMAN ISOLATES BY SERVIYPE AND STATE DURING 1966

(NY A-Albany, BI-Beth Israel, C-City)

										RE	PORTE	NON D	NAMU	TABL	LE VI	(Cont i SEROT	TPE AN	D STA	TE DURING	1966	-	-			Ī		
							RC	1 0 I	× N	N D	REP	0 8 1	NI	C C	ENT	8				F	701	10 %	1066	1 of		7, of	
SEROTYPE	EAST	HTUOS	CENT	RAL	3	EST S	HINO	CENTRA	٩L			WC	INTAL	×		-			PACIFIC	OTI	TOTA	L TOTAL	TOTAL	TOTAL P	TUMAN H	1966 IUMAN	SEROTYPE
	KY TI	ENN A	TA MT	SS TOT	ARK	5	OKLA	TEX	TOT	MONT 1	TDA WY	0 COLO	HN C	ARI UT	CAH NE	V TOT	WASH	ORE	CAL ALAS	IN TOT IN	_				-	1000	
electua amager anetum berta berta	15		0	1 1	3 11	1 95 6	-	a0	1 115 6		1 2	1		1	<i>1 2 1</i>	2 10 2	1		8 57 7 B	8 62 3	3	0.05	20 1 33 33 25	3.9	9 333 34	0.03 0.01 1.7 0.4 0.2	rlachua Amager Anveum bareilly berta
binz# blockley bovis-morbificans brrendrup brede ney				1 7 2	10 4	14 2 18 13	s	1 2	12 12 23 18		1			1	1 2	- 4	18 2	15	₩ 4 ⁴ - 4 E	3 77 1 16	8 21 6 8	0.04	213 213 213 25 25 110	3.1	24 603 111 159	0.1 3.0 0.6 0.6	binza blockley bovis-morbificans breedeney
california cerro champaign chester cholerae-suis	10		2 17	6 8 0 10 2 12 2 2 2 2	4	7 66 44 13		1	2 4 14			1				-			м и и	6 S S	15	0.08	49 63 184 2	0.9	15 12 0 109 10	0.07 0.6 0.5 0.5	california cerro champaign chester cholerae-suis
cholerae-suis v kun corvallis cubana denver derby	4		5	1 5		4 4 11 91	2 2	- 50	6 16 96					2		Ś	13	4	3 11 1 27	33	21	0.05 0.06 0.06 0.06	114 25 106	1.7	26 131 204	0.1 0.7 0.7 2.0	cholerae-suís v kun corvallís cubana denver derby
drypool dublin efmsbuettel enterfiidis gallinarum			2 15	9 21	613	15 107	15	300	15 129 3 8			-			5 7	6 6	4		30	30 2 2	199	0.3	2 49 53 37	0.7	2 4 1,237 1,237	0.01 0.02 6.2 6.2	drypool dublin einsbuettel enteritidis gallinarum
give grumpensis halmstad heidelberg illinois	1 1	~		5 16	1 19	12 5 36 36 2		~	14 5 57 2			-		3	69 1	72	1 15	2 12	10 143 2	13 170 2	78/	0.08	95 1 831 831	1.4	78 2 1,622 0	0.01 0.01 0.0 8.1	give grumpensis halmstad hiltnois
indiana infantis java javiana johannesburg	e.		0	2 2	22 1	10		8	34	-		1		e.	0	14	14	~	76 2 14	<u>97</u> 14	362	0.0	32 385 25 11 7	5.6	65 367 312 1 D.	0.3 6.6 1.8 1.6 .004	indiana infantis java javiana johannesburg
kentucky lexington lille litchfield livingstone				2	-	8 6 12		N N	11 6					е 1	-	1 1	-		3 14	3 2 14	80 11	0.00	48 11 18 82 82	0.7	38 0 31 31	0.0	centucky lexington iille iitchfield iivingstone
menheten menis meleagridis menscon miami					~	440-									1	1	1		15 4 1	16 4 2	2112	0.09	44 3 311	0.6	134 134 83 83	0.0	wanhattan aanila eeleagridis senston siami
minneapolis minneoca montevideo muenchen muenster		4	1910	141	~ ~ ~ ~	26 53 11 12		24	28 60 13						e 1	9 7	11	-	1 6 16 14 1	1 6 17 2	346	0.04	33 33 213 50 11	3.1	1 0. 8 337 229 27	0.004 1.7 1.1 0.1	if nnear ol ia if nnesota montevideo wenchen wenster
new-brunswick newington newport norwich ohio	5 1		ي ب		2	33 33 2	3	2 7	2 15 42 4			1		e	3	6	5 1	-	32 33	33	86 82 159 10 10	1.1 1.1 2.1 0.09	1 48 203 1 9	3.0	53 53 1,319 12 0	0.3	ew-brunswick ewington weyort iorwich hio
oranienburg orion osio panama paratyphi-B			4	-7	14	18		n 61	21 2 17 17		-					1	3 1	1 2	6 3	4 6	183 25 6 9 9	2.4 0.08 0.3 0.3	190 9 32 32 7	2.8	399 33 26 274 153	2.0 0.01 0.11 0 0.8 P	ranlenburg eion alo anama aratyphi-B
poona pullorum reading saint-raul		1	-	1 2	10	1 2 3 19		~ ∞ ∞	1 2 8 37	1	-	2		e.	2	2 2 14	1 2 13	1 16 25	7 13 34	7 31 72	20 53 334	0.1	13 200 49 49 273	2.9	40 105 30 737	0.2 0.05 0.15 3.7 3.7	oona ullorum eading ubislaw aint-paul
san-diego schwarzengrund senftenberg sigsburg simsbury	1	14			1 1 2	1 5 38 4 1		e 1	2 45 1					1		2 2 2	m	80	70 204 19 4	81 204 19 4	110 276 37 37 9	2.4	158 162 127 4	2.4	122 71 72 5 0	0.6	an-diego chwarzengrund enftenberg iegburg
taksony tennessee thomasville thompson typhi-murium	4 0		2 17	22 1 19	2 27 20	29 21 29	1	19	31 21 69	ñ	6 1	4		2	80.01	2 40	1 13 28	58 e t	2 19 24 253	2 24 1 309	206 29 203 884	0.06 2.7 0.4 0.4 11.5	2 117 10 198 978	1.7 2.9 14.3	133 579 5,744 2	0.0 0.7 0.7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	aksony ennessee homasville hompson yrhi-murium
typhi-murium v cop typhi-suis urbane westerstede worthington	-		2 12	6	25 2	2 1 28		1	28 1 30	2	2	1		2	m	6 11	1 7	1 2 2	2 6 11	5 6 13	203 7 18 18 116	0.09	282 2 29 29 84	4.1	178 0 28 44	0.9	yrhi-murium v cop yphi-suis rbana esterstede orthington
untypable group B untypable group Cl untypable group E untypable group K untypable group O						r 4							~			~		0 M	a 4	17 3	61 11 01	0.04	131		312 140 13 0 0 0	1.6 u 0.7 u 0.06 u 0.0	ntyrable group B ntyrable group C ntyrable group E ntyrable group K ntyrable group X
unknown	+	-+		-	:	~			5	1	-	-		-	-			-	9	2	32	0.4	=		81	0.4 u	nknown
TOTAL	1 1	3 40	130	642	211	206	28	90	142	T (WI	rgin	Island.	s) 2	-	0 65	z.	157	50 L.	300 3 des rare se	0 1,610 (1.709	• 1	6,834		0,040	-	TOTAL

Table VII.-Rare salmonella serotypes recovered from nonhuman sources in the United States, 1966

			Non	human	Hu	ıman
Serotype	State	Source	1966	Total ¹ 1963-65	1966 ²	Total ³ 1963-65
S. abortus-bovis	ILL (1) LA (1)	Rabbit Livestock feed	2	0	2	0
S. adelaide	LA (1)	Livestock feed	1	2	0	7
S. alagbon	NJ (2)	Unknown feed	2	0	0	0
S. albany	MD (1) MISS (1)	Chicken Chicken	2	16	14	15
S. amsterdam	OHIO (1)	Unknown feed	1	1	0	1
S. babelsberg	IND (1)	Bone meal and meat scraps	1	0	0	1
S. birmingham	LA (1)	Livestock feed	1	0	0	0
S. bradford	NJ (1)	Pork	1	0	4	2
S. cambridge	LA (1)	Livestock feed	1	4	0	6
S. caracas	LA (1)	Livestock feed	1	1	0	1
S. carrau	MASS (2)	Snake	2	3	6	11
S. colorado	NJ (1)	Unknown feed	1	0	1	8
S. eastbourne	MINN (2)	Lizard	2	1	0	6
S. emek	TEX (1)	Unknown feed	1	0	0	4
S. eppendorf	NJ (1)	Pork	1	0	0	0
S. fayed	LA (1) NC (1)	Livestock feed Dog	2	0	9	6
S. gaminara	LA (1) TEX (1)	Sewage Dog	2	4	10	19
S. habana	MD (2)	Chicken feed and cooked blood and feathers	2	0	3	1
S. hamilton	LA (1)	Soybean meal	1	0	0	0
S. hartford	FLA (1)	Turtle	1	4	33	49
S. inverness	ILL (1)	Lab mouse	1	6	2	11
S. jedburgh	LA (1)	Turtle food	1	0	0	0
S. kaapstad	LA (1)	Livestock feed	1	0	1	2

¹Represents 17,684 isolations of salmonellae from nonhuman sources, 1963-65.

²Represents 20,040 isolations of salmonellae from humans during 1966.

³Represents 60,625 isolations of salmonellae from humans, 1963-65.

Table VII.-Rare salmonella serotypes recovered from nonhuman sources in the United States, 1966 (Concluded)

			Nor	human	Hu	ıman
Serotype	State	Source	1966	Total ¹ 1963-65	1 9 66 ²	Total ³ 1963-65
S. kottbus	GA (1)	Chicken	1	1	1	14
S. luciana	LA (1)	Turtle	1	0	1	2
S. madelia	CÁLIF (1) SC (1)	Turtle water Cattle	2	8	3	5
S. mikawasima	IND (2)	Turkey	2	2	0	0
S. mission	LA (1) OHIO (1)	Livestock feed Animal feed	2	6	6	20
S. mississippi	LA (1) VA (1)	Livestock feed Livestock feed	2	1	55	106
S. new-haw	NJ (1)	Animal feed	1	1	.9	2
S. pharr	MICH (1)	Capybara	1	0	0	0
S. pomona	NJ (1)	Animal feed	1	6	4	4
S. portland	WASH (1)	Turtle water	1	0	1	1
S. seremban	KAN (1)	Ice cream	1	0	2	0
S. stockholm	OHIO (1)	Animal feed	1	1	1	0
S. teddington	LA (1)	Livestock feed	1	0	0	0
S. tourai	NJ (1)	Animal feed	1	0	0	0
S. tucson	CALIF (1)	Unknown	1	0	0	0
S. tuebingen	MICH (1)	Snake	1	0	0	0
S. typhi	MO (1)	Water in pink elephant	1	1	654	2,1 28
S. uganda	KAN (2)	Tankage	2	1	0	7
S. vejle	LA (1)	Livestock feed	1	0	0	0
S. wayeross	MINN (1)	Lizard	1	0	0	0
S. westhampton	KAN (1)	Egg product	1	5	1	9
S. wichita	NEB (1)	Glandular material	1	0	0	0
S. antypable group I	CALIF (1)	Horse	1	0	0	0

¹Represents 17,684 isolations of salmonellae from nonhuman sources, 1963-65.

²Represents 20.040 isolations of salmonellae from humans during 1966.

³Represents 60,625 isolations of salmonellae from humans, 1963-65.

)

Serature	Chic	kens	Turl	keys	Sw	ine	Ca	ttle	All Domest Farm A	ic Fowl and nimals
сентуре	Number	Percent	Number	Percent	Number	Percent	Number	Percent	Number	Percent
S. anatum					63	10.8(4)	10	2.9(4)		
S. blockley	90	6.4(5)								
S. chester		3	117	6.3(5)						1 1
S. cholerae-suis v. kunzendorf					87	14.9(2)				
S. derby					96	16.4(1)				
S. dublin							36	10.4(2)		
S. heidelberg	164	11.7 (3)	458	24.7(1)	47	8.0(5)			676	15.8(2)
S. infantis	166	11.9(2)					· · · · ·		224	5.2(5)
S. montevideo	112	8.0 (4)				2 V				
S. newport							25	7.2(3)		
S. saint-paul			203	10.9 (3)		·	6	1.7 (5)	269	6.3(3)
S. schwarzengrund			215	11.6(2)					235	5.5(4)
S. typhi-murium and S. typhi-murium										
v. copenhagen	295	21.1(1)	152	8.2(4)	84	14.4(3)	213	61.7(1)	784	18.3(1)
Total	827	59.1	1,145	61.6	377	64.6	290	84.1	2,188	51.2
Total (all serotypes)	1,4	00	1,8	358	58	34	34	45	4,5	27 4

Table VIII.-Five most common salmonella serotypes isolated from domestic fowl and farm animals in the United States, 1966

*Rank shown in parentheses.